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ABSTRACT 

A differential method of orbit improvement uiiiiziiig obaervztiona! 
data is presented for Vinti's spheroidal solution of the dynamical 
problem of unretarded artificial satellite motion about an oblate planet, 
recently modified so as to permit the exact inclusion of the effects of 
the third zonal harmonic term of the planet's gravitational potential 
field. The first-order Taylor's series expansion used for  the equations 
of condition is fitted to observationalvalues by an iterated least-squares 
process, producing successively smaller corrections to the orbital 
elements. A mean se t  of elements, conditioned by the observations, re-  
sults for use in orbital predictions for intermediate time points or for 
later epochs. The differential coefficients in the conditional equations, 
applicable to any type of observational data, are derived analytically 
from the equations of the accurate reference orbit. The method of dif- 
ferential correction may be used for orbits of all inclinations, including 
equatorial and polar, and both a first-order and a lengthier, but more 
exact, second-order treatment for the periodic variables are given. 
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t 
INTRODUCTION 

In order to predict the precise position, at a given time, of a satellite revolving about a planet, 
an extensive mathematical theory of the satellite's motion and the exact values of certain physical 
parameters (e.g., gravitational constants) are required. If the position of an artificial satellite of 
the Earth is to be determined relative to an observer on the Earth's surface, then, in addition, the 
accurate geodetic position of the observer is necessary. Any mathematical theory of motion is 
based upon certain constants of the motion which initially must be determined empirically. Once 
approximate values for these constants of the motion a r e  available, then they may be utilized in the 
theory to predict future orbital positions of the satellite. A comparison between the positions pre- 
dicted by the theory and those actually observed will indicate discrepancies, expressed numerically 
as the differences between the observed positions and the respective computed positions. These 
a r e  known as observational residuals, and the fact that they a re  non-zero is due to several causes. 
One fundamental cause which is, unfortunately, ever-present is the inadequacy of the theory: that 
is, the inability to account mathematically for all the physical forces acting upon the satellite. 
Moreover, there a r e  always e r r o r s  associated with the observations themselves, because of fluc- 
tuations in the atmospheric density, optical imperfections in the telescope, inaccuracies in the 
rechctior? of the nbsemational recordings, and the like. Further, the physical parameters required 
by the theory often a r e  not known with sufficient precision, and the geodetic position of the observer 
may likewise be measured inaccurately. Finally, there are e r r o r s  introduced by the approximate 
values for the constants of the motion used in computing the theoretical position. 

Despite all the inadequacies and short-comings enumerated above, the very existence of the 
discrepancies between theory and observation provides a means of improving the approximate values 
of the constants of the motion. One procedure for  improving these constants in an analytic theory 
of motion involves expressing the incremental changes in the positional co-ordinates due to changes 
in the constants of the motion as coefficients having the form of partial derivatives in a Taylor's 
ser ies  expansion. In such a case, the partial derivatives must be determined as explicit functions 
of variables which ar ise  in the analytic theory of motion. This method of orbit improvement is 
known as differential correction. 

The purpose of the present paper is to provide such an orbit improvement method for the 
spheroidal theory of artificial satellite motion. The spheroidal method for satellite orbits, de- 
veloped by Vinti (References 2, 3, 4, 5, and 6), supplies a procedure for calculating an accurate 
reference orbit of any drag-free satellite moving in the gravitational field of an axially symmetric 
oblate planet. In the case of artificial satellites of the Earth, the intermediary reference orbit 
reproduces exactly the zeroth and second zonal harmonic coefficients in the ser ies  expansion of 
the geopotential function, and also accounts for more than half of the fourth zonal harmonic. Re- 
cently, Vinti (References 7 and 8) has modified the spheroidal potential SO as to allow exact in- 
clusion of the effects of the third zonal harmonic as well, heretofore the major neglected effect in 
the spheroidal orbital theory. (The first zonal harmonic is entirely eliminated, of course, by proper 
choice of co-ordinate origin.) Accounting for the third zonal harmonic directly in the intermediary 
orbit in this manner affords a more accurate treatment (Reference 1) than would be possible 
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through perturbation theory. This paper will present a differential method of orbit improvement 
based upon the modified spheroidal theory that includes the effects of the third zonal harmonic 
term. 

# 

FUNDAMENTAL EQUATIONS FOR DIFFERENTIAL CORRECTION 

Consider a system of constants of the motion, qi  (i = 1, 2, - - , n), which are utilized in a 
mathematical theory of motion to predict orbital positions of a satellite. In this context, such 
constants of the motion a re  generally referred to as orbital elements, and the number, n , contained 
in the system is often six. Denote a positional co-ordinate of the satellite at time t by R( t ), using 
subscripts "0" and "c" to distinguish between observed values and values computed by the analytical 
theory using the orbital elements. We assume that the differences of the co-ordinates, R, ( t )  - Rc ( t  ), 

as well a s  the required corrections to the elements in the improvement of the orbit, are sufficiently 
small  so that their squares and higher powers may be neglected. W e  can then express the obser- 
vational residuals by a truncated Taylor's se r ies  expansion restricted to first powers, in the 
general form: 

Here the computed value, Rc ( t  ) , is viewed as a function of n independent variables, qi (i = 1, 2, . . . , 
n), which a r e  to be improved by the additive increments, Dq,  (i = 1, 2, . . . , n). The coefficients 
in the Taylor's expansion expressing the increment of the co-ordinates caused by a change in the 
orbital elements have the form of partial derivatives, and these must be determined analytically 
f rom the equations in the mathematical theory of motion. Each separately observed co-ordinate 
yields an equation for  corrections of the elements of the form given above. Ordinarily, the number 
of such so-called equations of condition available far exceeds the number, n , of unknowns, A q i .  

This set of linear simultaneous equations forms an inconsistent system (due to inherent random 
and possibly systematic e r ro r s  in the observations) for which no exact solution exists. It may be 
solved by the method of least squares, yielding "preferred" values for the unknowns. The solution 
of the equations by the principle of least squares follows well-known schemes (Reference 9), so 
that the problem reduces to evaluating the derivatives of the co-ordinates with respect to the el- 
ements (the so-called differential coefficients). 

We now introduce certain conventions in order to allow discussion of the problem in more 
explicit terms. Assume that the satellite's positional data a re  recorded at the tracking stations in 
the form of direction cosines observed with respect to a topocentric (i.e., situated at the Earth's 
surface) co-ordinate system. The topocentric o r  "local" co-ordinates shall be distinguished by 
the subscript, "MI'. The system is orthogonal and right-handed, with the X, -Y, plane tangent to 
the Earth's surface, The X, -ax i s  extends in an easterly direction along the line of latitude, the 
Y, -axis extends in a northerly direction along the line of longitude, and the Z, -axis is normal to 
the surface and points toward the geodetic zenith. If L, and M ,  denote the observed direction cosines 
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6 
of a satellite (in the X, - and Y, -directions, respectively) for  a given time of observation, then the 
corresponding computed values of the direction cosines a re  given in te rms  of the local co- 
ordinates by 

X M  
Lc = ( X i  t Yi t ZJ 1'2 

and 

The computed value of the third direction cosine, Nc (in the Z,-direction), is not an independent 
parameter, but is pre-determined by Lc and M E  through the relation, 

N, = ( i - ~ ; - ~ ; ) ~ / 2  . 

For this reason, each satellite observation provides two, and only two, independent co-ordinate 
values, which here are chosen to be Lo and M , .  

The mathematical theory of motion will ordinarily predict a satellite's position with respect 
to a rectangular geocentric system (x, Y ,  Z )  of co-ordinates, the so-called inertial frame of ref- 
erence. In th i s  system, the X - Y  plane is the Earth's equatorial plane, and the origin is situated 
at the Earth's center of mass. The X - a x i s  extends toward the vernal equinox (the first point of 
Aries), the Y-axis is orthogonally to the east  to form a right-handed system, and the Z - a x i s  coin- 
cides with the Earth's polar axis. In order to obtain a satellite's local co-ordinates from its 
inertial co-ordinates, the inertial co-ordinates of the observation point at the time of observation, 
which we shall denote ( XT, YT, Zr)  , must be known and two rotations performed to bring the local 
and inertial systems into parallel alignment. Let u s  denote by 3, the angle between the vernal 
equinox and the X,-axis as measured in  the observation latitude plane. Then $x will depend upon 
the longitude of the tracking station and the hour angle of the vernal equinox at the time of observa- 
tion. If 8, represents the latitude of the tracking station, then the local co-ordinates of the satel- 
lite at observation time are given by the matrix equation, 

- s in$x  c o s $ ,  0 

X 1-1). Z 
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The difference of column matrices on the extreme right represents a translation from the Earth's 
center to the tracking station position; the center matrix on the right represents a rotation in the 
latitude plane about the polar axis through an angle, 3, , to bring the inertial X-axis into coincidence 
with the station's X, -ax i s ;  the remaining matrix on the right represents a rotation in the longitude 
plane about the x,-axis through an angle equal to the complement of 8, to bring the inertial Z - a x i s  
into coincidence with the station's Z,-axis. This matrix equation, when expanded, reads 

x, = (x-x,)  cos$x + ( Y - Y , )  s i n + x  , 

Y, = - ( x -x,) s in$x s i n  8, 

and 

Z, = ( x - x ~ )  s i n + x  coseD - 

( Y  - Y , )  cos$x s i n e ,  

Y - Y , )  cos$x cos e ,  t 

( z - z , )  C O S B ,  , 

~ - ~ , ) s i n B ~  . 

We can now write the first-order Taylor's se r ies  expansion for the equations of condition 
corresponding to each time of observation in the following more explicit form: 

and 

Since the local co-ordinates are functions of the inertial co-ordinates, which a r e  in turn 
functions of the orbital elements, then the chain rule may be used to expand the differential 
coefficients. 

and 
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The partial derivatives of the direction cosines with respect to the local co-ordinates are found 
directly from the expressions for Lc and Mc. 

and 

where 

R, = ( X , , ? t Y i  +Z,,?)1/2 . 

Since the co-ordinates, X,, Y,, and Z,, and the angles, 3 ,  and e,, are independent of the orbital 
elements (and merely geodesic functions), we have the matrix equation, 

0 

= sineD ;ij 
- cos e ,  
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Equivalently, 

and 

az  
- cos $bx cos 8, as, + s i n e D  aqi . s i n  +x cos 8, dq ax - - -  

as, 

The problem remains to evaluate the differential coefficients, Jx /aq i  , aY/aq,, and az/aq, ( i  = 1, 2, 
- . . , 6 ) ,  which a r e  the derivatives of the inertial co-ordinates with respect to the orbital elements. 
At this point, the mathematical theory of motion becomes of primary importance. 

OUTLINE OF METHOD USED TO EVALUATE DIFFERENTIAL COEFFICIENTS 

The constants of the motion, qi  (i = 1, 2, . . . , 6 ) ,  which we choose for the mean orbital 
elements for the modified spheroidal theory of satellite motion (including the exact effects of the 
third zonal harmonic coefficient of the oblate planet's gravitational field) a r e  the following: 

q, = a, the semi-major axis. 

q2 = e ,  the eccentricity. 

q, = s ,  corresponding to s in '  I in Keplerian motion, where I is the inclination of the orbital 
plane to the equator. (However, S may be negative for orbits sufficiently close to equatorial. For 
a polar orbit, S is unity, and in all cases, Sz 5 1.) 

q, = p, , corresponding to the negative of the time of passage through pericenter in Keplerian 
motion. 

4, p, , corresponding to the argument of pericenter in Keplerian motion. 

q6 = p, , corresponding to the right ascension of the ascending node in Keplerian motion. 

These elements differ slightly from those selected by Vinti in the final algorithm for the reference 
orbit (Reference 8, Section 12), but the above parameters seem more suitable for the differential 
correction. 
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c 
The relation between rectangular inertial co-ordinates and oblate spheroidal co-ordinates, 

p, 7 7 ,  & which are involved in the solution of the problem of satellite motion, is given by 

x = i ( P 2  t c 2 ) (  1 - 7 2 )  cos4 , 

and 

z = p q - 8 ,  ( -15751)  . 

Here c and 6 a re  adjustable parameters that are chosen to agree with the coefficients of the zonal 
harmonics in the ser ies  expansion of the Earth's potential function. In te rms  of the Earth's equa- 
torial radius, re, and the nth zonal harmonic coefficient, J, , the proper choices a r e  

and 

1 
6 = - 2 r e  J2-' J, 

For the Earth, the values are approximately c Y 210 km and S Y 7 km. 

In order  to evaluate the derivatives of the inertial co-ordinates with respect to the orbital 
elements, we must know d p / d q , ,  dq/dq i ,  and d4/dqi (i = 1, 2, - - - , 6). The oblate spheroidal co- 
ordinates are rather involved functions of the orbital elements. The process for determining the 
partial derivatives of p , 77, and 4 is a lengthy one which will be presented in a synthetic, rather 
than analytic, manner. That is, necessary partial derivatives of the simpler functions of the orbital 
elements will be given first, followed by partial derivatives of more complicated functions of the 
elements involving the pre-determined partial derivatives. 

It is worth noting in passing that the equations to be presented herein apply to orbits of all 
inclinations, including equatorial. There are no special simplifications introduced in the case of 
equatorial o r  near-equatorial inclinations, as there were for the spheroidal theory that did not 
include the effects of the third zonal harmonic (Reference 6). 

However, as in the earlier spheroidal theory, the differential correction may include derivatives 
of the periodic terms taken through the second order, or, alternatively, it may be simplified to 
omit periodic te rms  higher than first order. In either case, some second-order effects a r e  in- 
cluded with the first-order te rms  and even with the zeroth-order terms. The terms of second and 
higher orders  that a re  to be omitted in the simplified version will be indicated as such. 
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TIME-INDEPENDENT PARTIAL DERIVATIVES IN THE DIFFERENTIAL CORRECTION 

We begin with equation (23.3),* which reads: 

p = a ( 1 - e ’ )  

Thus: 

and 

JS 

Since 

1 
b, = - T A ,  

by line 8 of section 1 2  of Reference 8, then by equation (40.1), we find: 

If we denote the numerator and denominator of b, by N and D respectively, then we have: 

Jbl a JP a JP - -  a a  - - c 2 ( l - S ) D - ’ { c Z S - a ( 2 p + a ~ )  + 4S2S[; ( 2 - ~ ~ ) + ( ; ) 2  ( 3 s - 2 )  ( 1 - 2 p z ) ] }  

f 4 (i)’ S‘S(1-S)  

*Al l  equation numbers, used in specifying the defining relation for a given variable, will  refer, unti l  otherwise indicated,  to Ref- 
erence 8. 
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Since 

b, = f i ,  

by line 8 of section 12 of Reference 8, then by equation (40.2), we find: 

b; = c z  - b l a - '  ( a p - c 2 )  . 

Thus: 

db, = 2 1 (ab2)- '  [ ( ap -c2 )  (bl a-'  - a) dbl - b, ( p i -  a E)] 

and 

This last sequence of three 
duce the following notation. 

equations can be written as a single generalized equation if  we intro- 
Let q1 = a ,  q, = e, and q3 = S, and let S i j  be the Kronecker delta, 

defined as follows: S i j  = 1 when i = j ,  and S i j  = 0 whenever i # j . Then, for i = 1, 2, 3, 

9 



This notation w i l l  be used extensively in order to write later sequences of equations in an efficient 
manner. 

' 

Combining equations (35.1) and (35.2) with equations already mentioned, we find: 

7 (. t b , ) - '  (b: + ap + 4 ab, - c')  PO 

Thus: 

and 

This may be written in the generalized form, for i = 1, 2, 3, 

From equation (21.2), we have: 

Thus, for i = 1, 2, 3, 

For  convenience in later equations, we now differentiate the inverse of 

aOP0 = ( a + b , ) P o  
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A to find, for i = 1, 2, 3, 

>is, a ( a o p o ) - '  = - p i '  ( a + b l ) - '  

From equations (31.1) and (31.2), neglecting terms of fourth order, we find: 

Now, for i = 1, 2 only, we have: 
~ 

> .  
t a. Po ( 1  - 2s) I-' - 2cz (;y (1  - 2s) il - -5: a. Po .) [l t ~ a. Po (1 -  2S)] & ( a 0 p o ) - '  

- 3  
C Z  C' 

However, 

I-' + c Z ( 1 - S ) ( S a S  ( a o P o ) - '  + (aopo)-')][li .,p, (1-2s) 
a C' 

By equation (32.1), 

Thus, for i = 1, 2, 3, 



I By combining equations (32.1) and (32.2), we have: 

2 h  
- u( l -c , )  ( l - c*s ) - l  

C! PO 

Thus, for i = 1, 2, 3, 

By combining equations (32.1) and (32.3), we have: 

i 
PO 

p = - u ( 1 - S )  (1-c ,s)- '  

Thus, for i = 1, 2, 3, 

. 

s 3 1  ( 1  -c,  s)-1 p x u ' 

Equation (21.1) may be rewritten as 

1 
I - 2 p ( a + b l ) - '  

Thus, for i = 1, 2, 3, 

For convenience in later equations, we now evaluate, for i = 1, 2, 3, 

and 
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By equation (5.31),* we have: 

Here, and in the following, P,, (x) is the Legendre polynomial with argument x of degree n .  The 
definition of R is given by equation (5.28), viz., Rn ( x )  = X" P,, ( I / x ) ,  where 0 < x 5 1. We shall de- 
note by Pn' ( X) the derivative of the Legendre polynomial with respect to the argument. Then, for 
i = 1, 2, 3, 

By equation (5.36), 

A, = ( 1  -.2)1/ZP-l Z ( ~ ) " P , , ( ~ ) R , ,  [ ( l - e 2 ) 1 / 2 ]  
n=O 

*Equation numbers used for the defining relations wil l  now refer, until otherwise indicated, to Reference 4. 
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SO that, for i = 1, 2, 3, 

By equations (5.61), (5.50), and (5.53), we have: 

where D n  is computed as follows: 

(n an even integer), and 

(n an odd integer). Then, for  i = 1, 2, 3, 

14 
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where dDn/dqi is computed as follows. If n is an even integer, then 

If n is an odd integer, then 

By equation (5.37), we have: 

1 3 b 2  , P-' (1 f 4 e,) + g b: p-3 (4 + 3e2)] * 

Thus, for i = 1, 2, 3, 



By equation (5.38), we have: 

1 3 
A,, = g (1 - e 2 ) 1 / 2 p - 3  e 2  [(3b,2 - b:) - 9 b ,  b: p-’ f ;7 b:p-2 ( 6 +  e2) ]  

Thus, for i = 1, 2, 3, 

27 a A 2 ,  __ - - - A , , [ p - l q  ap t 6 , ,  e ( l -e ’ ) - ’ ]  + + p - 3 e 2  ( l - e 2 ) 1 / Z { [ - p - 1  (3b;-b:) + T  p - 2 b l b :  
a s ,  

3 ap 9 - 1  ab, 
- 2 p-3 b; (6 + e2 ) ]  - aq ,  + (3b, - 2 p b:) dql 

ab  3 
+ [2 p-, b: (6 + e’) - 9p-’  b,  b, - b 2 ]  xq:} 

1 3 -  
+ - 4 X 2 1  ~ - ~ e ( l - e ’ ) l ’ ~  [3b,2-b:-9p-’b1b:+ ~p 2b;’ ( 3 t e 2 ) ]  . 

By equation (5.62), we have: 

A,, (1 -e2)1’2p-3  e [ 2 t b  , p- ( 3 1  - e  1 2 ,  - p-2 (; b; I C 2 )  (4 - t  3e2)] . 

Thus, for i = 1, 2, 3, 

~ = - 3 A 3 , p - ’  $ t (1-e2)1 /2p-4e  
aA31 

aq, 

1 ap 3 d b l  
+ 2pw2 (4  f 3e2 ) (I b z  + c2)] aql + (3 f 7 e’) aql 

- b, p-’ (4  t 3eZ 

3 1 
- 6,, p-3 [(l - e 2  - (1 [2 t b ,  p-’ (3  + 4 e 2 )  - p-’ (1 b: t c 2 )  (4 t 3eZ)]  . 

By the corrected version of equation (5.63), 

A,, Z ( 1  - e’) 1/2 p-3 e2 

1 6  

4 
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b Thus, for i = 1, 2, 3, 

- -  - - A,, C3p-1 + b,, e ( 1  - e ~ ) - , ]  

f ( 1 - e 2 ) 1 / z p - 4 e 2 { [ p - 2 ( ~ b ~  t c 2 ) ( 3 t ~ e 2 )  1 

- q p - ' b 1 ] $  3 + 4 %  3 dbl - 2 p - ' b 2 ( 3 +  1 

dq. 

+ s21  (1 - e2)"' p-3 e[$ (1 + 3b1 p- I )  - p-z (3 1 b: + c2)  ( 3  t e.)] . 

By the corrected version of equation (5.64), 

A 
"33 = 3 1 ( ? - e 2 \ 1 / 2 ~ - 4 e 3 [ ~  1 ~ l - p - ~ ( ~ h ~ + ~ z ) l  1 

/ L' 'J 

Thus, for i = 1, 2, 3, 

- -  JA33 dp 1 1 - 3 A , ,  p-' aql f 3 (1 - e 2 ) l l 2 p - ,  e3  
d q l  

- 

f 3 6,. p-, e2  [3(1 - e 2 )  
1 dbl 

+ - ~ - p-' b, aq, 4 dql 

- (1 - e 2 ) - l l 2  e2  ] [T 1 b, - p- ' ($ b: t c2)] - 

By equation (5.65), 

+ g 8 z , e 3 p - 5  1 [$ ( l - e 2 ) - 1 / z e 2 - ( l - e z ) 1 / 2 ] ( ~ b ~ t c 2 )  1 . 
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By equation (47),* we have: 

Thus, for i = 1, 2, 3, 

From equation (102.l), 

i P ( l - S ) - l  , 

SO that, for i = 1, 2, 3, 

- a i  = ( l - S ) - l [ = -  aP + 8 3 1  P ( l - S ) - l ]  . ’ 

a s ,  

From equations (147.1) and (147.2), 

1 
h, = 2 (1 +C,  -C,)-”’ , 

and 

Thus, for i = 1, 2, 3, 

and 

‘Equation numbers will now refer, until otherwise indicated, to Reference 8. 
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From equations (100.1) and (100.2), 

e 2  = Q ( l - P ) - '  , 

and 

e 3  Q(l +F)- I  

Thus, for i = 1, 2, 3, 

and 

From equation (131.2), 

e '  = a e ( a + b l ) - '  , 

SO that, for i = 1, 2, 3, 

d e '  dbl aqi = ( a + b l ) - '  S I i  e + z z i  a - e '  ( E l i  +-)I 
From equation (149.1), 

a3 = ( s g n a 3 ) a 2  (l-Su-') ' /z , 

where sgn a 3  = a 3 / (  a3 1 is +1 for a direct orbit and -1 for a retrograde orbit. Then, for i = 1, 2, 3, 
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By the corrected version of equation (95), neglecting terms of fifth order, we have: 

1 3 15 3 1 3 
B, = - 2 C 2  - 3 C :  - ( $ C ~ + ~ C ~ C 2 + g C ~ ) ( 1 + ~ Q 2 )  - j i j C l P 2  

5 1 3 35 1 3 5 
C ; ) ( l +  2 Q2 + jij Q4)  - 128 C; (1 + 2 Q2 + 8 Q4 f - (E C:Cl f Q6)  

3 15 

Thus, for i = 1, 2, 3, 

aB3 - 1 3 dC1 1 ac1 3 5 ac2 
~ aql - - 2 ( ~ f 2 C l d q l ) -  ( 1 f 2 Q 2 ) [ ~ C 1 ( ~ C : f 3 C 2 ) d q ,  + 4 ( a C , 2 + C 2 ) q ]  

15 3 45  
128 C: + E C:C2 + 8  C," - 

15 1 3 dC, ac2 3 ac1 
- C2 (1+ 3 Q 2 +  g Q4)[$ C 1 C 2  dcl, + (: C: + C 2 )  K]+ C2 ( I +  2 Q 2 )  [3P(C2 aql 

ap 21 1 3 5 dC2 
32 C; (1 + T Q2 f g Q4 + 16 Q') dql 2 C l  dql 

ac, ac 

By equation (116.3), 

1 1 
B,, = - 3 Q2 - - C Q4 8 2  

so that, for i = 1, 2, 3, 

1 aQ 1 ac2 
~ = - ~ Q ( l + C ~ Q ~ ) q - g Q ~ d 9 ,  * 
dB12 

aql  

By the corrected version of equations (116.4), 

9 1 
B,, = - C2F'Q + 3 C , C 2 Q 3  f 2 C 1 Q  
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and 

1 
B,, = - 32 [(4C2 +X:)Q2 + X;Q4] . 

Thus, for i = 1, 2, 3, 

and 

By equations (122.1) and (122.2), we have: 

mv, = ( - 2 ~ z , ) ' / ~  ( a  + b ,  + A ,  + c 2  A2Bl'BZ-')- '  , 

and 

%v2 
= a2u- ' / 'A  2 2  B - '  (a + b, t A, + c 2  A, B,' BL1) - '  . 

Thus, for i = 1, 2, 3, 

and 



The following time-independent partial derivatives a re  used only when the differential cor- I 

rection includes periodic te rms  through the second order. 

By equations (5.32), (5.33), (5.39), and (5.40) of Reference 4, we have: 

A,, = ;T 3 ( l - e 2 ) 1 ’ 2 p - 3 b ~ e ( b ~ - 2 b , p )  , 

3 
A,, = 3 (1 - e 2 ) 1 / 2 p - 3  b: e 2  , 

A,, = 8 1 ( 1 - e Z ) 1 / 2 p - 4 b : e 3 ( b : p - 1 - b l )  , 

and 

3 
A,, = 256 (1 - e 2 ) 1 / 2  p-5 b; e4  . 

and 

6,i  p-’b; e3  [4(1 - e z ) ” ’ -  (1 - e’] 

23 



By the corrected versions of equations (116.3) and (116.4) of Reference 8, we have: 

3 
B,, = - 2PQ + jj C, Q3 , 

and 

Thus, for i = 1, 2, 3, 

and 

a B 2 4  - 3 ac2 
128 c2 Q3 (Q aq, + x2 7$) . -__ - 

as, 

TIME-VARYING PARTIAL DERIVATIVES IN THE DIFFERENTIAL CORRECTION 

We shall continue the use of the generalized notation introduced in the preceding 
whereby w e  let q , ( i  = 1, 2, 3) refer to the orbital elements a ,  e ,  and S, respectively. 

24 

1 
B,, = - - 24 ‘1 Q3 ’ 

1 
B,, = 64 C, Q4 

1 
B,, = - C, C,Q3 

section, 
The 



time-dependent parameters will  involve, additionally, the orbital elements P,, P2, and P,, which we 
shall represent a s  Pi ( i  = 1, 2, 3) in the generalized form of the partial derivatives. 

By combining equations (121.1)* and (123.1), w e  have: 

Thus, for i = 1, 2, 3, 

Also: 

and 

In what follows, whenever a partial derivative with respect to P, is zero, it will  not be given. 

By combining equations (121.2) and (123.2), we have: 

Y s  = mu2 [ t + ~ l + , B z a ~ ' A ; l ( a + b l  +A,)] 

* A l l  equation numbers, used in specifying the defining relation for a given variable, will henceforth refer to Reference 8. 

25 



Also: 

and 

By equation (131.1), letting El 5 M s  + E o ,  we have: 

P - e '  s in i - '  M s  

Thus, for i = 1, 2, 3, 

Also, for i = 1, 2, 

By the anomaly connections given in equations (132), taken to zeroth order, 

c o s v '  = ( c o s E - e > ( 1 - e c o s E ) - '  , 

and 

s i n  v '  = (1 - e') 1'' ( 1  - e cos F)-1 s i n  E , 

where 

v o  = v '  - MS 

Then, for i = 1, 2, 3, 

26 



Also, for i = 1, 2, 

By equation (133), we have: 

I Y o  = a2 ( - 2 ~ . , ) - ' / ~  u-1/2 A 2 B 2 -' v 0 '  

Thus, for i = 1, 2, 3, 

Also, for i = 1, 2, 

By equation (136.2), we have: 

M, = - (a t b 1 ) - '  [(A, + c2 A, B,' BL1)  v o  f c2 a i 1  (-2al)  'I2 u1/2 B12 s i n  2(Ps + Y o ) ]  

Thus, for  i = 1, 2, 3, 

1 aa1 aa2 
t - a - 1  2 B12 dq, -a2- 'B12 q ) + 2 c 2 a L 1  (-2a1)1/2u1/2B12 c o s 2 ( Y s  t Y o ) ( 2  t:)} . 

Also, for i = 1, 2, 

- aM1 = - ( a + b l ) - '  [ ( A l + c 2 A 2 B , ' B T 1 )  api avo + 2 c 2 a T 1  (-2al)1/2u1'2B12 c o s 2 ( Y s  + Y o )  
ap, 
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B y  equation (137), neglecting te rms  of third order, we have: 

1 
E,  ( l - e ' c o s F ) - ' M 1  - ~ e ' ( l - e ' ~ o s E ) - ~ M ~ s i n i "  

Thus, for i = 1, 2, 3, 

Also, for i = 1, 2, 

By the anomaly connections, taken to first order, 

C O S V "  [COS ( ? + E , ) - e ]  F - e c o s  ( & t E , ) ] - l  , 

and 

s i n v "  ( 1 - e 2 ) 1 ' 2  [ l - e c o s  ( t ' + E , ) ] - ' s i n  (&+E1) , 

where 

v "  - (MS +v,)  . v1 = V'' - v' = 

Then, for i = 1, 2, 3, 

- a v ,  = El-..) s i n  ( & + E , )  (e + %) 
a q ,  

+ 6 2 i  s i n '  ( ? + E , q  ( s i n  v " ) - '  [1 - e c o s  ( & + E , ) ] - '  -aqi J v '  * 



In the above and in the following, we employ the symbolic notation: 

and 

By the corrected version of equation (139), we have: 

tu, ( -2a1)-1’2~-1’2B2-1 ( A , V , + A , ~  s i n v ’  + A Z z s i n 2 v ’ )  . 

Thus, for i = 1, 2, 3, 

a A 2  1 
+ A Z l s i n v ’  + A z 2 s i n 2 v ‘ )  + a 2  ( -2a l ) -1’2u-1 /2B-1  + s i n  v ’  - J q ,  

t s i n  2v’  d 8 %  2 t ( A z l  cos v ’  + 2 A,, COS 2 ~ ‘ )  
q i  
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Also, for i = 1, 2, 

The following time-dependent partial derivatives a re  used only when the differential correc - 
tion includes periodic te rms  through the second order. 

By equation (143.2), we have: 

M z  - ( a + b 1 ) - '  ( A l v l f A l l s i n v '  + A 1 2 s i n 2 v '  

t c 2 a Z - l  (-2al)1'zu1/2 [ B ' Y  1 1 + B  l l C O S  (ys+yo)  

a v '  a u  
+ ( A l l c o s v ' + 2 A l z c o s 2 v ' )  aqi + c Z c r i 1  (-2a1)1/2u1/2 (;u-l- a s ,  

+B13 cos 3(Y, +Yo) + B 1 4  s i n 4 ( Y s  + Y o ) ]  f c z  a i 1  (-2-a1)1/2u1/z 

+ 4 B l z Y 1 s i n 2 ( Y s + Y 0 )  + 3 B 1 3 s i n 3 ( Y S + Y o )  - 4 B 1 4 ~ ~ ~ 4 ( ~ s f ' 4 ' o ) ]  (q a y s  + 5)]} a q ,  
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Also, for i = I, 2, 

t c2 a2-1 (-2a1)1’2u1’2 
+ 2B,,  c o s  2(Y, +Yo:  $ aul - [.,,sin ( V I ,  + Y o )  

+ 4B , ,  vl sin 2 ( Y S  + Y o )  + 3 B , ,  s i n  3 ( Y s  + Y o )  - 4 B,, cos 4 ( v ,  + y o ) ]  

By equation (143.1), we have: 

E, = [ l - e ’ c o ~ ( & t E , ) ] - ~ M ~  . 

Thus, for i = 1, 2, 3, 

Also, for i = 1, 2, 

Also, for i = I, 2, 
7 

c 

By the anomaly connections, taken to second order (where we choose the notation v rather 
than v ” I ) ,  

c o s v  = ( c o s E - e )  ( 1  - e  c o s E ) - l  , 
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and 

where 

Then, for i = 1, 2, 3, 

- a v  2 = [ ( 1 - e 2 ) s i n E K  a E  ( s i n v ) - ' ( 1 - e c o s E ) - 2  - 
a q l  

Also, for i = 1, 2, 

J v  2 ~- a p i  - (1 - e 2 )  s i n E ( s i n v ) - ' ( 1 - e c o s E ) - 2  

Since v = v '  + v l  + v , ,  then, for i = 1, 2, 3, 

a v '  a v 1  a v 2  av  - - 
aq l  a q I  a q ,  aq i  

t - t - .  - -  

Also, for i = 1, 2, 

a v r  a v l  av2  
- -  a v  - ~ t - t -  * ab, ab, abi abi 

By the corrected version of equation (145), we have: 

Y, = - B2-' [-B,, Y, s i n  (Ys +Yo)  + 2B,,Y1 cos 2(Y, -t Yo) + B,, cos 3 ( Y s  +Yo) 

+ B Z 4 s i n 4 ( Y s + Y 0 ) ]  + a 2  ( - 2 a l ) - u 2 ~ - 1 / 2 B - 1  ( A , v 2  + A 2 ,  v 1 c o s v '  

t 2A2,  v1  cos 2v' + A , ,  s i n  3v '  

I- 

and 

where 

1) ' 
v 2  = v - v"  - - v - (Ms + v 0  + v 

Then, for i = 1, 2, 3, 

a v  2 a E  
a q l  a q ,  
- = [ ( l - e2 )  s i n E -  ( s i n v ) - ' ( 1 - e c o s E ) - 2  - 

Also, for i = 1, 2, 

apl J v  2 = ( 1 - e , )  s i n E ( s i n v ) - ' ( l - e c o s E ) - 2 q  J E  
a v 1  

- (5 +-) 
Since v = V' + v l  + v , ,  then, for i = 1, 2, 3, 

Also, for i = 1, 2, 

By the corrected version of equation (145), we have: 

Y, = -B2-' [-B,,Y,sin ( Y s + Y o )  + 2 B 2 , Y l c o s 2 ( Y s + Y o )  + B 2 3 c O S 3 ( y s t y ~ )  

+ B Z 4 s i n 4 ( Y s + Y 0 ) ]  + a 2  ( - 2 a l ) - u 2 ~ - 1 / 2 B - 1  ( A , v 2  + A 2 ,  v 1 c o s v '  

t 2A2,  v1  cos 2v' + A , ,  s i n  3v '  
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Thus, for i = 1, 2, 3, 

~- ay, - B,-' [ - B z l Y l s i n ( Y s  *Yo) + 2 B z 2 Y l c o s 2 ( Y s + Y o )  + B 2 , c o s 3 ( Y s + Y 0 )  a% 

- ( A z l v l s i n v '  +4A, ,v1  s i n 2 v ' - 3 A 2 , c o s 3 v ' - 4 A 2 , ~ ~ ~ 4 ~ ' )  a9, "'I 
Also, for i = 1, 2, 

a~ ay 
+ 4 B z 2 Y 1 s i n 2 ( Y s + Y 0 )  + 3 B z , s i n 3 ( Y s + Y o )  - 4 B Z 4 ~ o ~ 4 ( Y s + Y 0 ~ ]  ($ +$)} 

- (A, v1  s i n  v + 4 A,, v s i n  2v ' - 3 A,, c o s  3 v '  - 4 A,, cos 4v ') e] * 
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Since i ~1~ + io + i, + i, , then for i = 1, 2, 3, 

Also, for  i = 1, 2, 

This concludes the evaluation of the partial derivatives of the uniformizing variables E, V, 

and i when the computation is followed through terms of the second order. If, however, second- 
order precision is not required, then the partial derivatives of M, , EZ, v,, and Y 2  may be omitted, 
and the above partial derivatives of the uniformizing variables reduce to 

and 

Likewise for the partial derivatives of E, v,  and i with respect to Pi (i = 1, 2). 

We now continue with the necessary equations preparatory to determining the partial deriva- 
tives of the inertial co-ordinates X, Y, and Z .  

By special cases of equations (104) with Y = i k  (1/2)n, we find: 

cos E; (I - e 2  s i n u l ) - '  (e2  - s i n i )  , 

 sin^; = ( 1 - e : ) 1 / 2  ( 1 - e 2 s i n i ) - 1 c o s ~  , 

and 

cos E; (1 + e 3  s i n ~ ) - l  ( e 3  t s i n v )  , 

s i n E ;  = - (1 - e : )  1 /2  (1 + e 3  s i n " ) - '  c o s y  
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. 
Thus, for i = 1, 2, 3, 

- -  dE,' - ( 1 - e 2 s i n ~ ) - '  1 - e ; )  aqi ay ~ (1 -e ; )  - 112 

aqi  

and 

. 

Also, for i = 1, 2, 

and 

By equations (114.1) and (114.2), we have: 

1 xo = (1 - 25)-1/2E21 t 5 (1  + 2 < ) - ' l 2 E  3 '  

and 

Thus, for i = 1, 2, 3, 

and 
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Also, for i = 1, 2, 

and 

a E  ' 
( 1  t 25)-  1/2 3 . a Xl 1 

a p, 

By equation (150), we have: 

4 = p, - c2a3  ( - 2 c ~ , ) - l / ~  ( A , ~ + A , ~ ~ i n v + A , ~ s i n 2 v + A , , ~ i n 3 v + A , ~ ~ i n 4 v )  

+ a 3 a z - 1 u 1 / 2  { l - S ) - 1 ' 2  [ ( h l + h z ) x o + ( h l - h 2 )  xl] 

3 3 
+ B,Y- 4 C l C 2 Q c o s Y  + 3 

Thus, for i = 1, 2, 3, 

2 
+ s i n  2v 7 t A 3 3 s i n 3 v t A , 4 s i n 4 v )  - ~ ~ a , ( - 2 a ~ ) - ' / ~  [v$ t s i n v  - 

aA31  

aq ,  q i  

d A 3 3  a A 3 4  . 
+ s i n  3v 7 + s i n  4v a + (A, + A, cos v + 2 A,, cos 2v + 3 A,, cos 3v 

qi q i  

+ 4 A,, cos 4v) d q .  "3 a3u-1*) a q ,  + l - S ) - l / z  

+ ( h l - h 2 )  xl] + B , Y -  4 3 C I C , Q c o s Y +  32 3 

+ (B, + 7 3 C C, Q s i n  Y + 16 3 C; Q2  cos  2") e} - 
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. 
Also, for i = 1, 2, 

d v  $$ = - c 2  a, (-2a1)- v 2  (A, + A , 1  cos v + 2 A,, cos 2 v +  3A,, cos 3 v  + 4 A,, COS 4 v )  - dP, 

. 

and 

Since the spheroidal co-ordinates a re  given by 

p = a ( 1 - e c o s ~ )  , 

and 

77 P + Q s i n Y  , 

we then have 

- _  3: - 1 - e 

and 

aE - -  3; - a e s i n E E  e 

# 

Also, for i = 1, 2, 



Further, for i = 1, 2, 3, 

and, for i = 1, 2, 

The partial derivatives of p and 7 with respect to P ,  are both zero. 

Finally, the inertial rectangular co-ordinates a re  given by 

and 

z = p r i - 6  

Thus, for i = 1, 2, 3, 

and 
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and 

and 

OBSERVATIONS O F  THE RIGHT ASCENSION-DECLINATION TYPE 

The differential coefficients in the form of partial derivatives of the inertial rectangular co- 
ordinates with respect to the orbital elements are completely general in the sense that they a re  
functions only of the mathematical theory of orbital satellite motion. Thus, they a re  applicable to 
observations of spacecraft position recorded in any format whatsoever. Previously, we had as- 
sumed that the observational data were recorded as direction cosines with respect to a topocentric 
latitude-longitude-zenith co-ordinate system. Another format frequently used for recording ob- 
servational data is the right ascension-declination type. In this section, we shall discuss the minor 
variations in the equations that ar ise  when this type of data is utilized. 

The co-ordinate system adopted for the use of right ascension-declination data is also situated 
at the tracking station on the Earth's surface, but its three co-ordinate axes a r e  parallel to the 
respective axes of the inertial system. Again designating the topocentric "local" co-ordinates by 
the subscript "M", we have, in this case, the Z , - a x i s  parallel to the Earth's polar axis, and the 
X,, - Y, plane parallel to the equatorial plane of the Earth. The X, -axis extends toward the vernal 
equinox, with the Y , - a x i s  orthogonally to the east to form a right-handed system. 

The observed right ascension, ao, is measured eastward from the vernal equinox, and the ob- 
served declination, S o ,  is measured as positive above and as negative below the equatorial plane. 
The corresponding computed values of the right ascension and the declination a r e  given in terms 
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of the local co-ordinates by 

ac = arctan (2) 9 

and 

In order to obtain a satellite's local co-ordinates from its inertial co-ordinates, the inertial 
co-ordinates of the observation point at the time of observation, denoted (X,,  Y,, Z,), must be 
known. However, no rotations are necessary to bring the two systems into coincidence in this 
case, since the topocentric and inertial co-ordinate systems are parallel. A single translation 
will suffice. Hence, the relations for the local co-ordinates of the satellite a r e  simply 

x, = x - x , ,  

Y, = Y - Y , ,  

and 

z, z - z, 

Notice that the above simplified relations are obtained from those of the direction-cosine-data 
case by the artifice of setting $x = 0 and 8, = n / 2  in the corresponding equations for  X,, Y,, and 
2, given earlier. 

The first-order Taylor's se r ies  expansion for the equations of condition corresponding to each 
time of observation a re  

and 



. 
where q ,  ( i  = 1, 2, - , 6) are the orbital elements. Expanding the above partial derivatives by 

I the chain rule yields 

and 

From the expressions for ac and in terms of the local co-ordinates, we find 

and 

1/2 1/ 2 
where R, (x: t y d  tzd) and r, = (S2 +Y:) . 

1 .  
Since the station co-ordinates, xT, YT, and Z,, a re  independent of the orbital elements (and 

merely geodesic functions), the following simple relations apply: 

1 -  
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c 

and 

The differential coefficients, dX/dql, dY/dql, and dZ/dql (1 = 1, 2, * * - , 6) are precisely those 
that have been evaluated previously in the differential correction scheme. 

REMARKS 

The differential correction process removes inaccuracies of the initial conditions (the nominal 
observations) and accounts for the effects of forces not considered by the analytical orbital theory. 
Such neglected forces may include aerodynamic drag, electromagnetic effects, solar radiation 
pressure, meteoric bombardment, and residual gravitational influences (including those arising 
from lack of spherical symmetry in the satellite, as well as perturbing planetary potentials). This 
is all accomplished by producing a mean set  of orbital elements through an iterated least-squares 
fitting of the first-order Taylor's ser ies  expansion of the conditional equations to numerous ob- 
servational values. Generally speaking, the fitting will improve as greater numbers of observations 
are considered and as the time span represented by the observational data is lengthened. However, 
the complexity of the mathematical processes involved in the fitting increases rapidly as additional 
observations are admitted. Because of this latter constraint, it is often advisable to perform re- 
peated differential corrections at various intervals of time (known as "epochs") rather than at- 
tempt to accommodate all the data in a single iterated fitting. 

The orbital improvement method of differential correction discussed in this paper has been 
programmed, primarily in the FORTRAN language, for  use on a large-scale electronic digital 
computer. The analytical nature of the entire procedure assures  a very rapid computational 
process. Application of the differential correction (combined with an orbit generator of position 
and velocity components) has been made to both actual observational data of artificial Earth sat- 
ellites and to artificially generated "data" for extremum cases, e.g., polar and equatorial orbits. 
The results have proven entirely favorable. Particular experimental applications will be published 
in a later paper. 
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* 
APPENDIX 

P 

FUNCTIONAL DEPENDENCIES O F  THE 
PARTIAL DERIVATIVES 

(none) 

The following tables a re  intended to display the inter-relationship of the various parameters 
whose partial derivatives appear in the differential correction. The partial derivative of each 
parameter in the left column is seen to be a function of those, and only those, partial derivatives of 
parameters occurring in the respective line of the right column. There is a certain amount of flex- 
ibility in the ordering of the partial derivatives occurring in the differential correction, as is 
demonstrated by the functional dependencies illustrated by these tables. 

Table I 

Time-independent Partial Derivatives 
(All taken with respect to orbital elements a, e ,  and S.) 

I I 

Functional Dependence on Other i Partial Derivatives Par t ia l  Derivative i 

a 
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Table I (Continued) * 

Partial Derivative 

A 2  

A 3  

A, 1 

1 

2 

A 3  3 

A 3 4  

Q 

4 

h l  

h 2  

e 2  

e 3  

e ‘  

a 3 

B,’ 

B 2  

B3 

B 1 2  

B 2  1 

B 2 2  

(*nL,l)  

(2”. 2) 

*A1  1 

* A I  2 

* A 2 3  

Functional Dependence on Other 
Partial Derivatives 
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Table I (Concluded) 

E I 

Partial Derivative 

1 V 

* A 2 4  

*Bl 1 

*B1 3 

*B2 3 

* B 2 4  

Functional Dependence on Other 
Partial Derivatives 

Table II 

Time-varying Partial Derivatives (All taken with respect to orbital elements 
a, e, S, J,, and +<,. Exception: d ,  X, and Y a r e  taken with respect to J3 ,  as well.) 

Partial Derivative 

*E2 

E 

* v 2  

V 

Functional Dependence on Other 
Partial Derivatives 
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Partial Derivative 

*y2 

Y 

2‘ 

E,’ 

XO 

X l  

t’ 

Table I1 (Concluded) 

Functional Dependence on Other 
Partial Derivatives 

Note: In Tables I and II, the asterisk indicates partial derivatives of 
parameters used only if the differential correction includes 
periodic terms through the second order. 
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